T8000

PC-Programmable MODBUS Temperature Transmiter and Signal Converter

September 2004

Description

The T8000 PC-Programmable MODBUS Temperature Transmitter and Signal Converter accepts a direct signal input from a wide array of sensors and analog devices:
RTD - Thermocouple - Current • Voltage
Millivolt - Ohms • Resistance - Potentiometer

Analog-to -MODBUS Conversion

The 4 -wire (line/mains-powered) T8000 converts the input to the standard MODBUS RTU (RS-485) communication protocol ready for direct interface with MODBUS-based monitoring and control systems.

Save Wiring and Installation Costs

When monitoring points are dispersed, or in small clusters, the 78000 is the ideal solution for collecting and concentrating them onto a single MODBUS RTU communication link.
Up to 32 (without repeaters) 78000 s can be multidropped onto a single low-cost communication link (such as a twisted wire pair or fiber optic cable). This eliminates the need to run a dedicated wire for each signal, and delivers significant savings on installation, cable, conduit, connection and wire tray costs.

Figure 1. Available $\$ 8000$ models deliver versatile input and output options.

The 78000 features a metal, RFI resistant housing that snaps onto standard DIN-style rails.

Features

- 20-bit input resolution delivers exceptional digital measurement accuracy.
The T8000 delivers accuracy of $\pm 0.1^{\circ} \mathrm{C}$ (\pm $0.18^{\circ} \mathrm{F}$) with all platinum RTDs, or $\pm 0.01 \%$ of maximum span with current and voltage inputs.
- Output error is eliminated.

Since the measurement is delivered to your control system as a digital signal, the output error produced by a traditional analog transmitter is eliminated.

- PC-programmable with Windows software.

From a single screen, you can choose, and then view to confirm, all of your application specific operating parameters from a PC.

- Long-term stability.

Allows up to 5 years between scheduled calibrations.

- Isolated and RFI/EMI protection.

Delivers superior protection against the effects of ground loops, plant noise, radio frequency and electromagnetic interference.

Certifications

C CE Conformant- EMC Directive 89/336iEEC EN 61326

Page 1

* All product names are trademarks of their respective companies.

T8000

PC-Programmable MODBUS Temperature Transmiter and Signal Converter

September 2004

Figure 2. Up to 32 (without repeaters) T8000 can be multidropped onto a single MODBUS RTU communication link. The T8000 can be installed on the same data link with standard MODBUS RTU devices including NCS NET Concentratore Process Control and Distributed lio System (shown below).

Figure 3. The T8000 programs quickly and easily from a single software window.

One Window.
 One Minute. One Setup.

All operating parameters configure quickly and easily using our Int elligent PC Configuration Software.
Programmable functions include:

- Input type and measurement range (zero and full scale values)
- Input trimming
- MODBUS parameters
- T/C reference junction compensation (on/off)
- Standard and custom linearization curves

Page 2

* All product names are trademarks of their respective companies.
dking @ thermometricscorp.com

Temperature Sensors for Aerospace, Marine

Petro-Chemical, Food Processing, \& Utilities
www.thermometricscorp.com
1-866-RTDNTCS (1-866-783-6827)
SBA 8A \& SSO-9001-2000
PRECISIONTEMPERATU
18714 Parthenia St. Northridge, CA 91324 (818) 886-3755 Fax (818) 772-7690

T8000

PC-Programmable MODBUS Temperature Transmiter and Signal Converter

September 2004

Trim to Specific Curve Segments

The T8000 can be trimmed with two data points within the selected zero and span measurement range. This allows a complete process range to be monitored, while placing measurement emphasis on a critical segment of the range.
In the figure below, the ideal RTD curve is optimized between $20^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ to match the curve of the sensor used. This provides incredible precision over a limited portion of the span, while measuring the remainder of the span with outstanding accuracy.
Figure 4. The T8000 can be set to measure the segment most critical to the process.

LOWER (ZERO RANGE)
FULL (HIGH RANGE)

Total Sensor Diagnostics for RTD Inputs

If the RTD input breaks, the user can decide whether or not to trip one alarm to indicate trouble. A plain- English error message on the PC software tells exactly which RTD wire has broken. Specific error messages eliminate the work of removing the sensor or checking all lead wires to diagnose a problem.

Superior Reference Junction Compensation

Uncompensated plastic terminals are very susceptible to ambient temperature changes that may result in readings that are off by several degrees. $T 8000$ models that accept temperature inputs (TPRG input) feature metal terminals and advanced electronic compensation techniques that provide a stable measurement in ambient temperature conditions.

Powers a 2-Wire Transmitter

The 78000 (HLPRG: current/voltage input model) comes standard with 2 -wire transmitter excitation that provides $24 \vee d c$ to power the loop. This saves the cost of specifying and installing an additional instrument power supply.
Figure 5. The T8000 provides transmitter excitation to power a 2 -wire transmitter.

Custom 128-Point Linearization Curves

The ability to plot a custom linearization curve is beneficial when non-linear input signals must be converted to linear output representations. Typical applications include monitoring a non-linear transducer, the level of odd-shaped tanks, and flow meter linearization.
Figure 6. Custom linearization points can be selected and saved in the T8000's memory to compensate for non-linear input signals.

* All product names are trademarks of their respective companies.

MID WEST SALES OFFICE
Merv Albert, Houston, Texas (281) 257-8000 $\mathrm{Fax}(281) 379-3963$ malbert $@$ thermometricscorp.com

T8000

PC-Programmable MODBUS Temperature Transmiter and Signal Converter

September 2004

Specifications (HLPRG: mA and V Input Model)

Table 1. Long-Term Stability for HLPRG (mA and V) Input Model

Stability (\% of maximum span)	Input-to-Output (Years)		
	1	3	5
Current Inputs	0.081	0.14	0.18
Voltage Inputs	0.093	0.16	0.21

Table 2. Long- Term Stability for TPRG (RTD, T/C, mV, Ohms, Pot) Input Model

Stability (\% of maximum span)	Input-to-Output (Years)		
	1	3	5
RTD, Ohm \& Pot Inputs	0.09	0.16	0.21
T/C \& mV Inputs	0.08	0.14	0.18

Page 4

* All product names are trademarks of their respective companies.

MID WEST SALES OFFICE
Merv Albert, Houston,Texas (281) 257-8000 Fax (281) 379-3963 malbert © thermometricscorp.com

Temperature Sensors for Aerospace, Marine
Petro-Chemical, Food Processing, \& Utilities
www.thermometricscorp.com
1-866-RTONTCS (1-866-783-6827)
SBA 8A \& SS O-900t-2000
PRECISIONTENPERATUR
18714 Parthenia St. Northridge, CA 91324 (818) 886-3755 Fax (818) 772-7690

T8000

PC-Programmable MODBUS Temperature Transmiter and Signal Converter

September 2004

Specifications (TPRG: RTD, T/C, Ohms, $m \vee$ and Pot Input Model)

Performance Input Accuracy:

See Table 5

Overall Accuracy:

The overall accuracy of the unit is the input accuracy. It includes the combined effects of linearity, hysteresis, repeatability and adjustment resolution. It does not include ambient temperature effect. For T/C input, add the RJC error.
Reference Junction Compensation Accuracy (T/C Inputs Only): $\pm 0.45^{\circ} \mathrm{C}$
Stability: See Table 2
Response Time:
INPUT UPDATE TIME: 128 msec ;

MODBUS POLLING TIME:

Dependent upon how fast and how often a MODBUS master requests data.

Isolation:

STANDARD UNIT: $1000 \mathrm{~V} m \mathrm{~m}$ between case and input. 1500 V ms between power and input; WITH -RF OPTION: 500Vrms between case, input and power.
Power Consumption: 1 W maximum Input Impedance:
T/C and mvinputs, 40 Mohms, nominal

Input Over-Range Protection: $\pm 0.5 \mathrm{Vdc}$
Excitation Current (RTD and Ohm Inputs
Only): 250 microamps, $\pm 10 \%$
Communications:
Type:
STANDARD MODBUS RTU protocol
interface over RS-485 (parameters as
specified in U.S. Standard EIA-RS485)

Address Range:

Configurable from 1 to 247 . Unit will assume a MODEUS address of 01 by default.
Baud Rates:
Interface supports the following: 300, 600, $1200,2400,4800,9600,19.2 \mathrm{k}$ and 38.4 k

Character Format:

One start bit, 8 data bits and one stop bit Indicators:
LED Type: INPUT
LED: Dual color LED indicates input failure READY LED: Green LED indicates unit is operating properly.

Ambient Conditions:

Operating \& Storage Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$

Effect of Ambient Temperature on Cold Junction Compensation T/C Inputs Only):

 $\pm 0.005^{\circ} \mathrm{C}$ per ${ }^{\circ} \mathrm{C}$ change of ambient temperature.Relative Humidity:
$0-95 \%$, non-condensing
Ambient Temperature Effect:
See Table 4
RFI/EMII Immunity:
STANDARD UNIT:
$10 \mathrm{~V} / \mathrm{m} @ 20-1000 \mathrm{MHz}$,
1 kHz when tested according
to IEC1000-4-3-1995
WITH -RF OPTION:
$30 \mathrm{~V} / \mathrm{m} 920-1000 \mathrm{MHz}, 1 \mathrm{kHz}$
AM when tested according
to IEC1000-4-3-1995
Noise Rejection:
Common mode:
100dB@50;60Hz;
Normal Mode: See Table 3
Weight:
290 g (10.2 oz)

Table 3. Normal Mode Rejection Ratio Table

Sensor Type		Max. p-p Voltage Injection for 100 dB at $50 / 60 \mathrm{~Hz}$
TiC: J, K, N, C, E		150 mV
T/C: T, R, S, B		80 mV
Pt RTD: 100, 200, 300 ohms		250 mV
Pt RTD: 400,500,1000 ohms		1 V
Ni: 120 ohms		500 mV
$\mathrm{Cu}: 9.03$ ohms		100 mv
Resistance	mV	
1-4 kohms	250-1000	1 V
0.25-1 kohms	62.5-250	250 mV
$0.125-0.25$ kohms	31.25-62.5	100 mv

Table 4. Ambient Temperature Effect

Input Type	Accuracy per $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ change in Ambient
* RTD	$0.0035^{\circ} \mathrm{C}$
Millivolt	0.5 microvolts $+0.005 \%$ of reading
Ohm	0.002 ohms + 0.005\% of reading
	Thermocouples
Input Type	Accuracy per $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ change in Ambient
J	$0.00016{ }^{\circ} \mathrm{C}+0.005 \%$ of reading
K	$0.0002^{\circ} \mathrm{C}+0.005 \%$ of reading
E	$0.00026^{\circ} \mathrm{C}+0.005 \%$ of reading
T	$0.0001^{\circ} \mathrm{C}+0.005 \%$ of reading
R,S	$0.00075^{\circ} \mathrm{C}+0.005 \%$ of reading
B	$0.0038^{\circ} \mathrm{C}+0.005 \%$ of reading
N	$0.0003^{\circ} \mathrm{C}+0.005 \%$ of reading
C	$0.00043^{\circ} \mathrm{C}+0.005 \%$ of reading
mV	0.5 microvolts $+0.005 \%$ of reading

* Accuracy of Ni 672 is $0.002^{\circ} \mathrm{C}$

[^0]
T8000

PC-Programmable MODBUS Temperature Transmiter and Signal Converter

September 2004							
Tabie 5. Accuracy with RTD, thermocouple, Ohms, and Millivolt Inputs (Models with TPRG Input)							
Input	Type	ct	Ω	Conformance Range	Minimum Span	Input Accuracy	Haximum Range
$\begin{aligned} & \text { RTD } \\ & 2,3,4 \\ & \text { Wire } \end{aligned}$	0.003850		100	$\begin{aligned} & -200 \text { to } 850^{\circ} \mathrm{C} \\ & -328 \text { to } 1562^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} 10^{\circ} \mathrm{C} \\ \left(18^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \pm 0.10{ }^{\circ} \mathrm{C} \\ \left(\pm 0.18^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & -240 \text { to } 960^{\circ} \mathrm{C} \\ & -400 \text { to } 1760^{\circ} \mathrm{F} \end{aligned}$
			200				
			300				
			400				
			500				
			1000				
		0.003902	100	$\begin{aligned} & -100 \text { to } 650^{\circ} \mathrm{C} \\ & -148 \text { to } 1202^{\circ} \end{aligned}$			$\begin{aligned} & -150 \text { to } 720^{\circ} \mathrm{C} \\ & -238 \text { to } 1320^{\circ} \mathrm{F} \end{aligned}$
			200				
			400				
			500				
			1000				
		0.003916	100	$\begin{aligned} & -200 \text { to } 510^{\circ} \mathrm{C} \\ & -328 \text { to } 950^{\circ} \mathrm{F} \end{aligned}$			$\begin{aligned} & -240 \text { to } 580^{\circ} \mathrm{C} \\ & -400 \text { to } 1076^{\circ} \mathrm{F} \end{aligned}$
	Nickel	0.006720	120	$\begin{array}{r} -80 \text { to } 320^{\circ} \mathrm{C} \\ -112 \text { to } 608^{\circ} \mathrm{F} \end{array}$			$\begin{aligned} & -100 \text { to } 360^{\circ} \mathrm{C} \\ & -148 \text { to } 680^{\circ} \mathrm{F} \end{aligned}$
	Copper	0.004720	9.035	$\begin{array}{r} -50 \text { to } 250^{\circ} \mathrm{C} \\ -58 \text { to } 482^{\circ} \mathrm{F} \end{array}$		$\begin{gathered} \pm 0.85^{\circ} \mathrm{C} \\ \left(\pm 1.53^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{array}{\|l\|} \hline-65 \text { to } 280^{\circ} \mathrm{C} \\ -85 \text { to } 536^{\circ} \mathrm{F} \end{array}$
Ohms	Direct Resistance	n/a	0-4000	0-4000	10,	$\pm 0.4 \Omega$	0-4000
	Potentiometer		4000Ω	0-100\%	10\%	$\pm 0.1 \%$	0-100\%
T/C	J	n/a	n/a	$\begin{aligned} & -180 \text { to } 760^{\circ} \mathrm{C} \\ & -292 \text { to } 1400^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} 35^{\circ} \mathrm{C} \\ \left(63^{\circ} \mathrm{F}\right) \end{gathered}$	$\stackrel{ \pm 0.25^{\circ} \mathrm{C}}{\left(\pm 0.45^{\circ} \mathrm{F}\right)}$	$\begin{aligned} & -210 \text { to } 770^{\circ} \mathrm{C} \\ & -346 \text { to } 1418{ }^{\circ} \mathrm{F} \end{aligned}$
	K	n/a	nia	$\begin{aligned} & -150 \text { to } 1370^{\circ} \mathrm{C} \\ & -238 \text { to } 2498{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} 40^{\circ} \mathrm{C} \\ \left(72^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \pm 0.30^{\circ} \mathrm{C} \\ \left(\pm 0.54^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & -270 \text { to } 1390^{\circ} \mathrm{C} \\ & -454 \text { to } 2534^{\circ} \mathrm{F} \end{aligned}$
	E	n/a	n/a	$\begin{aligned} & -170 \text { to } 1000^{\circ} \mathrm{C} \\ & -274 \text { to } 1832^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} 35^{\circ} \mathrm{C} \\ \left(63^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \pm 0.20^{\circ} \mathrm{C} \\ \left(\pm 0.36^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & -270 \text { to } 1013^{\circ} \mathrm{C} \mathrm{C} \\ & -454 \text { to } 1855^{\circ} \mathrm{F} \end{aligned}$
	T	n/a	n/a	$\begin{aligned} & -170 \text { to } 400^{\circ} \mathrm{C} \\ & -274 \text { to } 752^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} 35^{\circ} \mathrm{C} \\ \left(63^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \pm 0.25^{\circ} \mathrm{C} \\ \left(\pm 0.45^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & -270 \text { to } 407^{\circ} \mathrm{C} \\ & -454 \text { to } 764^{\circ} \mathrm{F} \end{aligned}$
	R	n/a	n/a	$\begin{array}{r} 0 \text { to } 1760^{\circ} \mathrm{C} \\ 32 \text { to } 3200^{\circ} \mathrm{F} \end{array}$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ \left(90^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \pm 0.55^{\circ} \mathrm{C} \\ \left(\pm 0.99^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & -50 \text { to } 1786^{\circ} \mathrm{C} \\ & -58 \text { to } 3246^{\circ} \mathrm{F} \end{aligned}$
	S	n/a	n/a	$\begin{array}{r} 0 \text { to } 1760^{\circ} \mathrm{C} \\ 32 \text { to } 3200^{\circ} \mathrm{F} \end{array}$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ \left(90^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \pm 0.55^{\circ} \mathrm{C} \\ \left(\pm 0.99^{\circ} \mathrm{F}\right) \end{gathered}$	- 50 to $1786^{\circ} \mathrm{C}$ - 58 to $3246^{\circ} \mathrm{F}$
	B	n/a	n/a	$\begin{aligned} & 400 \text { to } 1820^{\circ} \mathrm{C} \\ & 752 \text { to } 3308^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} 75^{\circ} \mathrm{C} \\ \left(135^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \pm 0.75^{\circ} \mathrm{C} \\ \left(\pm 1.35^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & -200 \text { to } 1836{ }^{\circ} \mathrm{C} \\ & -392 \text { to } 3336{ }^{\circ} \mathrm{F} \end{aligned}$
	N	n/a	n/a	$\begin{aligned} & -130 \text { to } 1300^{\circ} \mathrm{C} \\ & -202 \text { to } 2372^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} 45^{\circ} \mathrm{C} \\ \left(81^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \pm 0.40^{\circ} \mathrm{C} \\ \left(\pm 0.72^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & -270 \text { to } 1316^{\circ} \mathrm{C} \\ & -454 \text { to } 2400^{\circ} \mathrm{F} \end{aligned}$
	C	nia	nia	$\begin{array}{r} 0 \text { to } 2300^{\circ} \mathrm{C} \\ 32 \text { to } 4172^{\circ} \mathrm{F} \end{array}$	$\begin{gathered} 100^{\circ} \mathrm{C} \\ \left(180^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \pm 0.80^{\circ} \mathrm{C} \\ \left(\pm 1.44^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & -\quad 0 \text { to } 2338^{\circ} \mathrm{C} \\ & -32 \text { to } 4240^{\circ} \mathrm{F} \end{aligned}$
mv	mv	nia	nia	-50 to 1000 mV	4 mv	15 HV	- 50 to 1000 mV

Page 6

* All product names are trademarks of their respective companies.

MID WEST SALES OFFICE
Merv Albert, Houston, Texas (281) 257-8000 Fax (281) 379-3963 malbert (\mathbf{Q}) thermometricscorp.com

Temperature Sensors for Aerospace, Marine Petro-Chemical, Food Processing, \& Utilities
www.thermometricscorp.com
1-866-RTONTCS (1-866-783-6827)

SBA 8A \& SSO-9001-2000

T8000

PC-Programmable MODBUS Temperature Transmiter and Signal Converter

September 2004					
Ordering Information					
Unit	Input	Output	Power	Options	Housing
T8000 PC-Programmable MODBUS Temperature Transmitter and Signal Converter	HLPRG Programs to accept: Current: Any range between 0-50mA including: $0-20 \mathrm{~mA}$ 4-20mA 10-50mA Voltage: Any range between 0-10 Vdc including: $0-5 \vee d c$ $1-5 \mathrm{~V} d c$ 0-10Vdc TPRG Programs to accept (see Table 5 for details): RTD: 2-, 3 and 4 wire; platinum, copper and nickel Thermocouple: J, K, E, T, R, S, N, C, B Ohms: 0-4000 ohms (potentiometer, 4000 ohms maximum) Millivolts: -50 to +1000 mV	MB MODBUS RTU (RS-485) communications	$\begin{gathered} 24 \mathrm{Vdc} \\ \pm 10 \% \end{gathered}$	-RF Enhanced RFI / EMI protection (see "Specifications" for details)	DIN Universal DIN-style housing mounts on 32mm (EN50035) G-type and 35 mm (EN50022) Top Hat DIN-rails FLB Externally mounted flange provides a secure mount and ensures resistance to vibration

When ordering, specify: Unit / Input / Output / Power / Options [Housing]
Model number example: T8000 / TPRG / MB / 24DC /-RF [DIN]

T8000

PC-Programmable MODBUS Temperature Transmiter and Signal Converter

Table 6. Terminal Designations

Input Type	Top Terminals (Left to Right)				
	T1	T2	T3	T4	
RTD, Ohms, Potentiometer, TiC \& Mv Inputs					
Current Input	Tx	+1	Com	Not Used	
Voltage Input	Not Used	Not Used	Com	+V	

		Bottom Terminals				
		B1	B2	B3	B4	
Row1	MODBUS Output	A	B	S	Not Used	
Row2	Power	Not Used	Not Used	+	-	

KEY:	I = Current Input
	$\mathrm{V}=$ Voltage Input
	COM = Common Terminal
	TX= Power for 2-wire Transmitter
	$\mathrm{A}=\mathrm{AMODEUS}$
	$\mathrm{B}=\mathrm{B}$ MODBUS
	S $=5$ MODBUS
	+ = Positive Power Input
	- = Negative Power Input

NOTES:

1. Terminal blocks can accommodate 14-22 AWG solid wiring.

Fiqure 8. Temperature Sensor Hook-Up Guide (Models with TPRG Input)

Thermocouple
and Millivolt Input

2-Wire RTD
or Decade
Resistance Box
:---:
or Decade
Resistance Box
:---:
orDecade
Resistance Bo\%
:---:
Input

Page 8

* All product names are trademarks of their respective companies.

MID WEST SALES OFFICE
Merv Albert, Houston,Texas (281) 257-8000' Fax (281) 379-3963
malbert (w) thermometricscorp.com

[^0]: * All product names are trademarks of their respective companies.

